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SOLID STATE. II. THEORETICAL ANALYSIS OF DIFFERENT REACTION
AND TRANSFORMATION SYSTEMS USING THERMOGRAVIMETRY ™

RAFIQ R. A. ABOU-SHAABAN ™" axp ANTHONY P. SIMONELLI
School of Pkarmacy, Institute of Materials Science, Umra:zly of Connecticus, Storrs, CI 06268
(USA) . .

ABSTRACT

A new mathematical approach has been developed to follow the kinetics of
reactions and transformations in the solid state using thermogravimetry. The technique
requires a thermogravimetric trace containing both an integral and first derivative
recorded at a single heating rate. The approach permits one to extract kinetic para-
meters from a wide range of systems as it can be readily adapted to most complications
generally encountered, including the presence of inert material and changing atmos-
phere conditions. The approach can utilize one or more process models and in this
way is able to account for the overlapping stages which can occur due to a change
in the mechanism. The equations lend themselves well to graphical analysis, ylelding
linear plots from which kinetic parameters of desolvation, chemical degradation, and
phase transformation of organic, inorganic, and polymeric compounds can be success-
fully extracted. The method provides a means to obtain kinetic parameters that
must otherwise be obtained from more tedious, time consuming isothermal techniques.

INTRODUCTION

Our previous paper! showed that the non-isothermal TG methods currently
used to study reactions and transformations in the solid state yielded significant
variations in the caiculated heats of activation due to the influence of procedural
factors. For this reason, the kinetic parameters extracted have been referred to as
“procedural” constants® 3. Experimentally, it was found® that the extracted para-
meters showed very wide ranges of values as a function of the sample size and heating
rate ratios.

The above showed that there was need for a method that would provide results
which would be reproducible, independent of experimental parameters, and be
accurate. The purpose of this manuscript is  to present such an approach. Hopefully,
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this will permit others to investigate and to determine mechanisms which are involved
in the solid state via non-isothermal thermogravimetric analysis with more confidence.

THEORETICAL CONSIDERATIONS

An analysis of the hypothetical character of the general equation used as a
basis to derive all of these methods, as well as the assumptions inherent with each
particular method, was made in order to determine all sources of the influence of
procedural conditions on the kinetic parameters!. This analysis revealed the following
implicit and explicit assumptions and suggested ways to overcome them.

(1) Equations were generally derived assuming that all solids decompose to
another solid plus gas. This is not a unique system for solid reactions and trans-
formations as other possibilities exist, such as solid decomposing completely to gas
or interacting with the gas carrier in a complex way. Therefore, the equation should
be individually derived for each and all possible processes which can be followed by
dynamic thermogravimetry.

(2) The function of the mass change, f(z), is generally arbitrarily chosen to be
(1 — a)* The use of the fraction conversion, «, causes the calculated kinetic para-
meters to depend strongly on the specific experimental conditions used. It should be
noted that reactions in the solid state are quite different from reactions in solution.
As the sample is heated, molecules in the crystal lattice are often subjected to decom-
position with very little interaction with other molecules. Therefore, the weight loss
is a measure of many variables such as the surface area, volume, weight, and type
of reaction or transformation, rather than dhe fraction conversion. This is apparent
when z has to be differentiated with respect to temperature, as differentiation may
scatter the data and maximize the error®. In addition, the fraction conversion changes
on the temperature axis as a function of the experimental conditions®. This, in turn,
affects the accuracy of the calculated dz/d7. The value of n should not be an empirical
constant but should depend solely on the reaction process itself. Therefore, in order
to overcome the drawbacks of the arbitrary choice of f(z), one should take into
consideration the analytical form of the reactants in the reaction in question from a
classical sense. Since thermogravimetry monitors the weight change as a function of
temperature and time, the apalytical form of the reactants should be based on the
mass balance of the reaction in question. ,

(3) The homogeneity factor, #, is frequently referred to as the reaction order
in analogy with homogeneous kinetics. This factor has purely empirical significance
and is by no means a universal constant for heterogeneous reactions®.

(4) The furnace atmosphere generally was not taken into consideration. For
many reactions, the results would change drastically with changes in furnace condi-
tions, i.e. whether a dynamic or static atmosphere was used or whether an inert or
reactive atmosphere was used. This can be overcome by standardizing the experimental
conditions, especially those undergoing the TG runs under a dynamic inert atmosphere.
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In addition, one should derive equations which account for systems with interacting
gas conditions.

&) Themmpletempemturewa.sassumedtobethesamethroughoutthespecxmen
and to be equal to the furnace temperature. These assumptions can only be cvercome
by taking the thermal gradient into consideration. Under dynamic heating at a certain
heating rate, the sample temperature is related to the furnace temperature by a
uniform function because the existing thermal gradient generally has a uniform-
character. The sample’s decomposition and/or phase transformation is 2 function of
its real temperature. The mass loss, therefore, is a function of the sample temperature
and is related to the recorded temperaturc by a thermal gradient function. If the
analytical function of the mass loss of the reactants is taken into consideration using
mass balance, and if the first derivative of the reactants’ mass loss is obtfained simul-
taneously under the same experimental conditions, the thermal gradient function
should be cancelled if we divide the first derivative of the reactants’ mass loss by the
mass function of the reactants. That is to say, both the integral and its simuitansous
first derivative should be used to calculate the kinetic parameters. This will cancel
the infivence of the experimental conditions on the extracted kinetic parameters. The
above data analysis will also cancel the effect of a non-linear heating rate on the
thermal gradient of the sample and, in turn, the kinetic parameters extracted.

(6) In the case of two TG curve methods, the assumption is made that the
thermograms will show a parallel shift on the temperature axis with increasing
heating rate or sample size. This assumption has been criticized by Zsako? and is said
to be false, which agrees with our findings!. Since the shifts are not believed to be
parallel, only one thermogram should be used for kinetic studies.

From the above analysis, it was decided to derive kinetic equations whnch are
based on the specific physical and chemical models involved to follow reactions and
transformations in the solid state. Since it was planned that the derived equations be
applied to thermogravimetric studies, only the processes involving a weight loss or
gain will be considered. These equations will be based on the following models.

Case I.

(a) liquid or solid 4 gas

(b) liquid or solid + X, 2 gas + X,
where X, is an inert filler material.

Case II.
() (iquid or solid), < (hqmd or solid), + gas
(b) (liquid or solid)y; + X, 4 (liquid or sohd)z 4+ X, + gas

Case III.

(@) (liquid or solid), 4 gas 4 (liqud or sold),
(b) (ligunid or solid), -+ X, + gas < (liquid or solid), + X,
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Case IV. :
(2) (iquid or solid), + gas 4 (liquid or solid), -+ gas,
(b) (liquid or solid), + X, + gas, 4 (iquid or solid); + X, + gas,

Case V.
(a) (liquid or solid), 4 solid, + gas,
(b) (liquid or solid), + X, 2 solid; + gas, + X,

Case VI
(2) (liquid or solid), + gas, 2 (solid or liquid), + gas»
(b) (liquid or solid), + X; + gas; 2 (solid or liquid), + X, + gas,

1t should be noted that any of the models I-IV can be reversible; however, only
in cases II-1Y would a study of the reverse reaction be feasible, and these are re-
presented in case V (11 and II1) and case VI. In addition, system (b) for all cases I-VI
is the same as system (2) with the exception that system (b) contains inert nonvolatile
additives in addition to the reactant compound.

A number of examples of the above can be cited. Examples of case Ia are
~ompounds which sublime or vaporize. An example of case ITa would be the desolva-
tion (with no oxidation) of the organic solvate to the anhydrous crystalline form. An
example of case II1a would be a compound which interacts with a gas to form a solid
with a higher molecular weight. Such processes cover reactions such as oxidation, gas
adsorption, and hydrate formation. An example of case IVa would be more complex
oxidation processes such as gas, being oxygen and gas, being a cleavage product or
products. Case Va is the same as case Ila except that it involves equilibrium. Case Via
is the same as Case IVa except that it involves equilibrium.

MATHEMATICAL ANALYSIS OF PROCESSES WHICH LEND THEMSELVES TO STUDY BY TG

The equations which will be derived for the above cases will be based on classical
kinetics and the analytical functions of the mass loss of the reactants of each reaction.
The analvtical functions of the mass loss of the reactants are based on mass balance.

The derivation of equations that will be used to study solid reactions and
transformations will be derived assuming that the weight (W7,,) as a function of
time and temperature (TGA) and the rate of mass change as a function of the time
(dW7, /dt) and temperature (AW, /dT) are experimentally available. Equations will
be derived for both isothermal 2nd non-isothermal conditions.

CASE Ia

Iiquid or solid 4 gas

or

A 4B, | .

where A, is the weight of the drug, organic compound, or intact polymer (the subscript
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designates the stzte of the compound). It should be noted that if the solid melts during
the run, it will affect the DTA observed but will not change the TGA or DTG
In this case, the rate of mass loss can be written as

U8 mad o
where k is the specific rate constant and 4 is the weight of the compound at time 2.

Non-isothermal conditions. A more uscful version of eqn. (1) can be obtained
by introducing the heating rate, d7/dz, noted by the symbol a. The time derivative of
the weight of the intact compound, eqn. (1), can be converted to a temperature
derivative by dividing both sides of eqn. (1) by a since

a4 1 A4

T dt a aT @

It should be noted that A: in case 1 is also equal to the observed weight of the sample,
W?,., during the degradation process. Incorporating these changes into eqn. ¢))
yields the equation

dWi) _ k
The dependence of the specific rate constant on temperature must be considered.
Therefore, using eqn. (3) and the Arrhenius equation &k = Z exp [(— AH*)/RT]t,
we may write

_ _‘1(_2_"';2_ - [.f_] [e—4ERTY(w2, ) @

Taking the logarithm of eqn. (4)

e[ ATy 2]t

Despite the negative sign, it should be noted that the term [ — d(W7, )}/dT is positive
as d(W?, )/dT is negative since W}, is decreasing during the study.

The above equation can be useful as a plot of the log[(— d(W7 ) 4ATI(W,,)
versus 1/T K will yield a linear function of slope 2qual to — AH*/2.303 R and an
intercept of log[Z/a]}. .

Q)

fIl:shouldbcnotadthatmwhoftbehtaauneussthemtanalenagyAE‘mthqthanAH'
'I’ms:snotconca,howevu,forTGAsmdxsasAE'requuwthatthevolumebeconstam.l"oraflm
dsamon,seetbedmmatthemdoﬂhlspaper '
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Isothermal conditions. The integral form of eqn. (1) (using W7, -for A3) is

) 4 z
d(Weed j
=~k {dt (
(Wons) 2
Woee 0
Therefore,
log (Wie) = — ke + log (W2 Q)

where W3, is the initial sample weight. According to eqn. (7), a plot of log (W7,))
versus time, £, wiil produce a straight line of slope — £/2.303.

CASE Ib
In this case, the sample contains inert nonvolatile material, X,, and the reaction

shown for case Ia must be written as.

A, + X, 3B, + X,

Mass balance requires that
(W) = 47 + X, ®)
Differentiating eqn. (8)
d(Wh) _ d(4) | d(X)
da  da TTa ®

Since X, is constant, d(X,)/dz is zero.

Non-isothermal conditions. From eqns. (1), (8) and (9), the rate expression for
this case can be obtained. The resultant time derivative of the weight of the intact
compound can then be converted to a temperature derivative using eqn. (2) to yield

AWe) _ KAD _ K

ar = —a = g W — X) (10
The specific rate constant is temperature dependent.  Therefore, usmg eqn. (10) and
the Arrhenius expression gives

[— dWeed/dT] _ [Z] _ —amernr :

(W) — X1 [a ] © : an

Taking the logarithm of eqn. (11) yields . .
[—d(We)dT]] _  4H* Z o

fog [ W) — xJ ] = " 23mmT T8 [Z—] ' az -

A plot of log [— (W2, )/ATY[(W,,) — X.] versus 1/T-will give a straight line with
a slope of — AH*{2.303R. In this non-isothermal equation, X is unknown, but its
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value can be obtained from a non-xsothermal run where X is the amount not mter-
acted at the end of the reaction, at infinite time. .

Isothermal conditions. Equation (10) must be converted to the time d:nvatwe
as g = 0 in an isothermal study.

13)
(Wos — X))
Therefore, the intcgtation of eqn. (13) will yield '
log (Wi — X) = ~ ‘2‘3’637 + log (W2, — x,) (9

According to eqn. (14), a plot of log (W7, — X) versus time will produce a straight
line of slope (— k/2.303). . , ,

CASE Ila

(liquid or solid); 24 (liquid or solid), 4 gas

A, 4B, +C,

A, is the weight of the intact compound, B, is the product of the reaction in the solid

or liquid state and C_ is the gaseous product which is carried out by the carrier gas.
Mass balance dictates that

A= 4+ @+ C) as
where A2 is the initial amount of the compound and (B, + (), is equal to the

amount of compound degraded at time . The weight of compound degraded can be
defined by

amount degraded = r(B) (16)

where Bf is the amount of the solid or liquid product at time £, and r is the ratio of
the molecular weight of A divided by the molecular wcight of B. Since no inert
‘material is present, A9 _equals W3 _and

W, = AL + r(BD - an

At any time ¢, the weight observed will be equal to the sum of both solid (or
liquid) 4 and solid (or liquid) Bf. That is

Wi, = 4 + B as)
Substituting 4] from eqn. (18) into egn. (17) yields
Woes = (Wi — BY + r(BY ’ a9
Rearrangement of eqn. (19) yields )

B = M (20) -

r—1
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Differentiation of eqn. (20) yields

d(B;) (d(W:aJ)( 1 ) \ | o (21-)

r—1

By taking the derivative of eqn. (17) and combining it w;th egn. (21), the rate ex-
pression, eqn. (1), which characterizes the mass change for this model, can be written
as .

- - (42) - (-0 (422) - - o

Since differential thermogravimetry (DTG) takes into account the change in
the weight observed and not the individual changes of 4] or B as a function of
temperature, the rate expression [d(W},.)/dT] must be used, not [d(4;)/dT] or

[d(B)/dT]-
From eans. (18) and (22),
(r = 1) ( S ) = — k[(Wesd — B] @3)
Substituting Bt from eqp. (20) into eqn. (23) yields
(757) (H2) = - o oo - (E=2=72) (eZ)

Non-isothermal conditions. A more useful version of egn. (24) can be obtained
by introducing the heating rate, a, given by (d7/d?) [see eqn. (2)] to coavert the time
derivative of the weight observed on the thermogram to a temperature (7 K) derivative.
As a result of these changes, eqn. (24) will transform to the following on rearrangement.

W) _ k(- ) @)

Converting the specific rate constant to this temperature function by substituting the
Arrhenjus expression into eqn. (25) yields

(2] 4]

Taking the logarithm of both sides of eqn. (26) and rearranging it, yields

o[ el 2] - @

a
According to equ. (27), a plot of the log{{— d(W> )dTY(W7:,) — (Wi )r1}
versus 1/T K will yield a linear function with a slope of — AH*/2.303 Rand an intercept
of log(Z/a). All of this information can be obtained from a combmed TGA and
DTG record. -

(W&J] | @6)
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Isothermal conditions. The integral form of the time derivative version of eqn. -
25 is

W _ i fe
| eocemr-— e
W
Therefore
log [(Wi) — (WEIr] = — e + log {HWSIIFI — 1} e

A plot of log[(W?,.) — (W3,,)/r] versus time should result in a straight line
with a slope equal to (— k£/2.303). :

CASE IIb

This case is the same as Case Ila except the sample contains inert nonvolatile
material, X,, and )
Mass balance dictates that egn. (15) converts to eqn. (30).

A + X, =W, = AL + X, + (B, + C) 30)
and

(W) = A + X, + rB; ) Gn
Mass balance also dictates that

(W) = AL+ X, + B G2
Substituting A; from eqn. (32) into eqn. (31) |
(W) = (o) — X, — B+ X, + 1B = (Wiy) + Bi(r — 1) @

Solving eqn. (33) for B

A — 39
Differentiating eqn. (34) with respect to time will yield
diBy (d(W‘,b,)) ( 1 )

da dr r—1 G

Combination of eqns. (1) and (35) and the derivative of eqn. (31) can be used to
describe the rate of mass change as follows. ’

G (D) - () () -0 oo
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Substituting for A] in eqn. (36) using eqn. (32) yields'

(72) (2232 = s 2 0 @
Substituting for B: from egn. (34) into eqn. (37) and rearranging yields
) . Xpwiy-xe-v-mvtn G8)

Norn-isothermal conditions. Converting eqn. (38) to a temperature derivative
[see eqn. (2)] and substituting the Arrhenius equation yields

- o) (2] [exp ~ 2] p ¥ ~ X — D — (73] G9)

where a is the heating rate. Rearranging eqn. (39) and taking the logarithm yields
— d(Wi)/d * .
log[ (¥ers)/dT ]=—["H ]+xog[§-] (40)
(W) — X, r — 1) — (WS 23RT ar

A plot of the left-hand side of eqn. (40) versus 1/7" will yield a straight line with a
slope of — AH*{2.3R and an intercept of log(Z/ar).
Isothermal conditions. The integration of eqn. (38) will yield

Weps ?
i AW Y
r(We) — X7 — 1) = (W]
wo,. 0
Therefore
log [r(Wie) — (We) — Xulr — D] = — ot + log [(r — 1) (Wo, — X (4D

A plot of log[r(W:,)) — (W3,,)) — X(r — vl)] versus time will give a straight line
with a slope of — k/2.303. ’

CASE Illa
(liquid or solid), + gas 4 (liquid or solid),

A, +G, 3B,

In this case, the rate of mass loss can be written as

— d(d*‘? = KGIXAD) | S @

where G, is the amount of unreacted gas at time 1. The reaction rate will be proportional
to the pressure of the gas in the chamber. For convenience, however, the weight of
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the gas rather than its pressure willbeused.ThisdosnotposcanyproblemsasG;
for a chamber of a specxﬁed volume is given by

MV o '
(RT)P' BP, : - @
where M, is the molecular weight of the reacting gas, ¥ is the volume of the reaction
chamber P} is the pressure of reacting gas in the chamber, G| is the corresponding
weight of the gas in the chamber and B is the propomonahty constant between

weights and pressures of gas.
Mass balance dictates that

G =

. | |
Wi — AL+ B = a4 2= 4D | @9

where B! = (A% — A)/r and r is the ratio of the molecular weight of A divided by
the molecular weight of B, or the ratio of A2 divided by B, if the reaction gocs to
completion. ’

Since (W3,) = A2, eqn. (44) can be written as

Differentiating egn. (45) and substituting into eqn. (42)

1 — (=) (2G=L) = xepan | (46)

Substituting eqns. (43) and (45) into eqn. (46) and rearranging yields

L8

¢ o) _ TEB (w0 — Wi o @

The constant f was included in eqn. (47) as the reaction rate is proportional to the
effective pressure of the reacting gas at the solid surface which could be less than the-
measured pressure of the reacting gas in the bulk of the reaction chamber, and fis the
proportionality constant between bulk and surface pressure of the gas.

There is an additional experimental condition that must be included in deriving
the appropriate equation for case III as this system involves an environmental gas
reacting with the solid. Obviously, the effective amount or concentration of gas as a
function of time will differ for static or dynamic conditions. The derivation of an

-equation that would be applicable under -all conditions of flow and reacting gas
pressures would yield equations that would be very cumbersome and applicable only
for the specific apparatus being used for the study. A more useful approach is to

- derive equations for specific conditions that can easily be experimentally attained
and therefore would be generally applicable to. all apparatus. In this way, one can
ignore any thermal andfor concentration gradients of reacting and product gases.

‘In the following sections, various flow and experimental conditions will be considered. -
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For constant gas flow. The simplest system that can be considered would be one
in which a quasi-steady state gas pressure is maintained throughout the study.
Obviously, the required steady state can be easily attained by the proper choice of
experimental conditions such as heating rates, gas flow, sample size, etc. Under these
conditions, the concentration of reacting gas at the solid surface is constant for the
duration of the experiment and the observed kinetics would be psecdo-first order
depending only on the activity of the solid.

For these conditions P[ in eqn. (47) becomes constant and is equal to the
initial pressure of the gas, P°

Non-isothermal candztwm-. Converting thx: time derivative of the weight observed
to a temperature derivative for the above conditions, eqn. (47) becomes

¢ S _ BIPE ppey — i) )

Using the Arrhenius expression and egn. (48), the following equation results afier
rearrangement.

_ d(We/dT  _ Bf(PPZ [ exp — AH*] 49
(W) — r(Wop)] ar RT
Taking the logarithm of both sides of eqn. (49) yields
+ d(W5, /AT _ __4AH*® BZf(PY)
[ (W) — r(W:] ] = T 230RT | fog [ ar ] 0

According to eqn. (59), a plot of log{{ + d(W: )/ATV[(W3,,) — r(W:, )1} versus
1/T gives a straight line with a slope of — AH*/2.303R.

Isothermal conditions. The integral form of eqn. (47) for conditions of constant
pressure is

Wens t
rd(We,)
—_- = — B k | dt
f (7o) — r(We)l e J-
obs
Therefore
log [(W3) — r(wa)] = — ZLEIK | 1oe raway @ — i 6D

2.303

A plot of the left-hand side of the logarithmic term versus time will give a straight
Iine with a slope equal to Bf(P2)k/2.303 and an intercept equal to log[ (W3, )(1 — N1
It should be riterated that egn. (51) will be valid only under conditions of quasi-
steady state in which the ratio of the presence of reacting gas at the surface and in the
bulk of the chamber does not change appreciably during the experiment. The effect
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of the above restriction can be minimized by using a sufficiently fast flow rate and high
pressure of reacting gas, a large reacting chamber volume, and a small sample size.

For no gas flow. To be rigidly correct, one would need to assume a closed
system so that gas flow could truly be considered zero. This can be done by sealing
the reaction chamber ocutlet, loading the reaction chamber with the reacting gas and
then closing the reaction chamber inlet. Often, however, the experiment can be
designed to essentially simulate a closed system. Examples would be an environmental
chamber that would greatly expand the volume of the reacton atmosphere or a
system that is essentially reacting with air. 7

There are two possible gas conditions under no flow conditions. In the first
situation, the amount of gas is in great excess so that its pressure is essentially not
changing due to the amount reacting. In this case, the pressure of gas in the chamber
remains constant and is equal to P{ which means that eqns. (50) and (51) would be
applicable. In the second situation, the pressure of gas is decreasing as a function
of time and its decrease must be accounted for in the derived equations. In the second,
situation, however, P} is changing appreciably dunng the experiments and egns. (50)
and (351) are not applicable.

One can account for P; changing during the experiment as obviously

P = P? — 4P . (52)

Mass balance dictates that AG}, the decreases in weight of the gas at any time, is
given by

AG, = (W, — WO = BAP; (53)
Equations (52) and (53) yield
_ (Wi, — W3
Py =Py — o= 9
Non-isothermal conditions. Using both eqn. (47) and eqn. (54)
Wa) _ T [P 4 (W) — (WIS — r(W5)] e

Substituting the Arrhenius equation into eqn. (55), converting to a temperature
derivative and rearranging yields
[ + dWS)/AT ] _fz [exp ~ AH;‘] ,
[BP; + (W3 — (WiLII(W2D — (W] RT
- Taking the logarithmic form for both sides of eqn. (56) will yield
log [ + d(We /AT ‘ ] _
T LIBP; + (Wow) — (WadlH(Waw) — r(Wew]

- [r] e [ ] e

9

ar
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- According to eqn. (57), a plot of the left !oganthm:c terms versus 1 ITK gws a
straight line with a slope of — AH*[2303R.
Isothermal conditions. Under this condition, the time denvatwe of eqn. (55) '
should be integrated as follows. ;

. (W) Ik {4 58
W-!_ [BP; + (We)) — (WouIH(Wes) — r(W‘aa)] I ‘ €

Since the measurements were started after the compound had reached the _equilibrated
temperature, some of the compound W2, had degraded. The amount observed at
the time of equilibrium temperature is referred to as the W2 which is different from
the previous W2_. Integration by the use of partial fractions will yield

Wobs
|+ (o) _
[BPS + (Weod) — (Wad IV — r(Wa)]

pr=°

Wie :
1 [+ AW orn) _
N [ = A= _ BP‘;] o BPp + (W) — (Wo)]

obs

aove.)
. 59
T O — Ve | &9

Eguations (58) and (59) yield

e e R e

— Bpo] _&t_
‘] 2303

(60)

e

[(l —n W‘;"]

A plot of the left-hand side of the logarithmic term versus 1/T K will yu:ld a strmght
Ene. The rate constant can then be extracted from the sIope. -

CASE I11Ib -
'I'hxsmsexsthesamcascnsemaexocptthesamplecontamsmertmatenalx,,
and - .

A+X. +G AB+X



103

Mass balance dictates that
W= A+ X, + Bi= A + x, + Fow -‘;4,_—71’,);;’ R > )

* : r

Therefore

(W) — X.0r — D) — (W3
r—1

Substituting eqn. (62), the time derivative of eqn. (62) and eqn. (43) into eqn. (42)

D (2 () gy [ X D=

‘For constant gas flow. The introduction for Case Ila is also applxmble to this
case.

Non-isothermal conditions. Converting the time derivative of the weight observed
[from eqn. (63)] to a temperature derivative at constant gas flow, we get

_ d(g’;@ - B[ Py (rwi) — X =1 - W2 ’ 69

A= ©2)

Using the Arrhenius equation, rearranging eqn. (64), and taking the loganthmlc form
for both sides of the resultant equation, will yield

— * - N
log. [ AW, D[AT } - _ 4H + log [ZfBP:] 65
(W) — X.(r — 1) — (Wo)1 2303RT- ar
Accordmg to egn. (65), a plot of the left-hand side logarithmic term versus 1/T K
gives a straight line with a slope of — 4H*/2.303R.
Isothermal conditions. The integral form of eqn. (63) for constant gas pr&m‘e is

W,

obs
- rd(W5) = [ : ,
-f [r(W‘.aJ—X,(r-l)-(W&J]—f( JkBPat
W:,’,, - ' 0 :

- Therefore _ , o
log [r(W) — X = - (W..,a] = "P° 'B ® + log CERILAES S

where (ﬂcBP’-’) isa pseudo-ﬁrst-order rate constant. A plot of Iog[r( X, r— 1)~ :
- (qu)] versus time should yxeld a stralght line witha slope equal to = kaP°12.303.
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For no gas flow. The introduction given for Case ITla is also applicable here.
In this case, however, eqns. (65) and (66) are valid for conditions in which the amount
of reacting gas is in great excess and therefore constant for the life of the experiment. -

Non-isothermal conditions. Using a similar approach as shown in Case I1la to
derive eqn. (57), but using eqns. (63) and (54), the final equation was derived and
is given by

log [ — d(Wp)/dT ] _ 4H*

BP? + (W% — (WeIIrWi) — X.r — D—w3)]d ~  2303rT
-

Equation 67 predicts that a plot of the left-hand side of the logarithmic form versus
reciprocal absolute temperature will yield a straight line with a slope equal to
— AH*[2303R

Isothermal conditions. The final equation is given by eqn. (63).

fkt
2.303r

log [Wo‘,b, + (- DX, —rW,,

BP} + W3 — Wi, ]=‘[’BP3+('—1XW°—X.)]

(r — IXX, — WooaJ]

+Iog[ BP:

(68)

Equation (68) predicts that a plot of the left-hand side of the equation versus time
will yield a straight line with a slope equal to —[rBPS + (r — IXW°® — X)]
Fkf2303R.

CASE IVa

(liquid or solid), + gas, 4 (liquid or solid), + gas,

or

" (liquid or solid), + gas, *¥7 complex 7 % (liquid or solid), + gas,

This case characterizes a complex oxidation process, in which gas,, Gy,, is
oxygen and gas,, G,,, is a cleavage product or products. This could be applied to
the mechanism of the effect of oxygen on organic molecules. It should be noted that
the observed weight in this case can increase or decrease with time depending on the
molecular weights of gases 1 and 2.

For denving the non-isothermal equation for this case, we assume in the latter
equation that the complex is decomposing very quickly so that its amount is negligible.

Mass balance dictates that ’

Wi = A + B, o | . o
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W2, = Wi, + 4G, — 4G}, ’ “ (70)

B = (W?L:A_D. _ (7
where 4G}, is the amount of gasz formed up to time 7, 4G}, the amount of gas,
reacted with A up to time 7, and r the ratio of the molecular weight A divided by
molecular weight B.

From equns. {69) and {71), we get

0 3 .
Wi, = A% + (l‘_'o_bs;;f_s). 72
Therefore
t Wo — T(W:bs)

Equation (73) is identical to eqn. (45) in Case Illa. Therefore, if gas, is used
at a constant gas flow to help remove the gaseous product gas,, eqn. (47) becomes

W) _ SHBES (s, — rwin) 74)

where P:’1 is the pressure of gas,;. Converting the time derivative of the weight ob-
served to a temperature derivative yields ’

d(Wi) _ fKBPS
r S = Lt e — v as)

For constant gas flow and non-isothermal conditions. Taking into consideration
that the specific rate constant is temperature dependent

A (12) (o #) o
Taking logarithms of both sides of eqn. (76) yields B
e[| () (8) ()

A plot of the logarithm term on the left-hand side of eqn. (77) versus 1/7 K will
yieid a straight line from the slope of which 4H* can be obtained. .

For constant gas flow and isothermal conditions. Equation (51) using Pg for
_ P2 can be used for Case IVa as well as Case IIla. That is "

g [(Wo) — rWad = — 2Pk L yoprwtoa-m . o®
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CASE IVb _

(liquid or solid), + gas, + X, — (liquid or solid), + gas; + X,

or ’ _

(iquid or solid), + gas; + X, **¥ complex 2 (liquid or solid), + gas, + X,
For this case, the mass balance is given as follows.

WS, = A% + X, @)
W:bs = A; + Xs + B; (80)
WS, = Wiy, + 4GS, — 4G, (630

0 H

Equations (80) and (82) yield

W‘,b,=A;+X,+(W°°" _rA‘_ X
Therefore

we - 1) —
A;=f( obs) — ergl ) — W . 83)

If we use gas; at a constant gas flow to help to remove the gaseous product,
gas,, we will end up with eqa. (84) after converting the time derivative to [d(W],,)/dT].

dWeD kaP° )
ar _ \

For constant gas flow and non-isothermal conditions. Equation (84) and the
Arrhenius equation will yield

[(Woed r — X (r — 1) — (Wa)] 649

d(Wee)/dT __ fBP)Z _ AH*
o) — X(r— 1) — (Wo) ar [exP RT] ¢
Taking logarithms of both sides yields eqn. (86).
[ — d(We)/dT ] log [ fBP%,Z ] AH* @6
(W) — X (r — 1) — (W9) ar . 2.303RT

A plot of the left-hand expression of eqn. (86) versus 1/T K will yield a straight
Iine with slope equal to — AH*[2.303R.

For constant gas flow and isothermal conditions. The mn:gral form of eqn. (84)
after conversion to a time derivative gives

rd(es.) - f FBP%k dt | En

(Wed — X,0r — 1) — (W3

obs
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Therefore

log [r(Wie) — Xor — 1) — (WSJ1 = fBI_;gkf

Therefore, a plot of the left-hand 51de versus time will yleld a straight line with a slope
equal to — f. BP°‘,k/2.303

+ lo g[(r— 1XW° "'"Xs)] (88)

CASEV
(liquid or solid), 2 (liquid or solid), - gas

It is not recommended that the forward and backward reaction be studied
simultaneously as this would unnecessarily complicate the system. It would be much
simpler and more accurate to study the forward and backward reactions individually.
This could be done by monitoring the furnace atmosphere. The forward reaction
must be studied first under an inert atmosphere and the effluent gas analyzed and
identified. The backward reaction can then be studied by using the identified gaseous
product as the furnace atmosphere.

The kinetic analysis for this model under dynamic fernace atmosphere condi-
tions can be studied using equations derived to suit Case I1a (for the forward reaction)
and equations derived to suit Case IIla (for the backward reaction). For the case of
static furnace atmosphere, the equations which would monitor this system will be
complicated and the experimental conditions difficult to contiol to yield meaningful
results without an extensive investigation. Therefore, it is recommended that this
system be studied under controlled furnace atmosphere which allows one to study
the forward and the backward reaction separately.

CASE V1
(liquid or solid); + gas, 4 (liquid or solid), + gas,

It is recommended that the forward and reverse reactions be mdxvxdually
studied as suggested and discussed under Case V.

The kinetic analysis for this model under controiled dynamic furnace atmosphere
can be done using equations derived to suit Case IV [egn. (72)] for both the forward
and reverse reactions. For the study of the forward reaction, gas, at a known and
constant pressure should be passed through the furnace. However, for the study of the
backward reaction, gas, at a known and constant pressere should be passed through
the furnace. The amount of gas can then be taken into consideration to use eqns. (77)
and (78) to obtain the kinetic parameters. For reasons stated under Case V, it is not
recommended that a static system be used to study this system.

EXPERIMENTAL REQUIREMENTS OF THIS APPROACH
Themanncrandtypc of data collected is an m.tegralpartoftheproposednon«

isothermal method and was dcveloped tbroughout this study as part of the techmque
introduced. - . ;
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The technique requires that both an integral (TG) and differential (DTG)
curve as a function of time and temperature are available or calculable. For analysis,
this technique only requires that the initial weights of gases in the reacting chamber be
known and does not require that the weight of gaseous reactants and products be
monitored as terms containing the gaseous change in weights have been converted
to terms expressed in observed sample weights as a function of time, #7,,. In this
way, the necessary data can be collected in one run using a single heating rate.

The experimental conditions, both sample-related and instrumecni-related,
shouid be monitored and specified in any studies using this method. The furnace
atmosphere for ali thermogravimetric studies using this approach should be dynamic.
The presence of a dynamic atmosphere can act either as a gas carrier in the case of an
inert atmosphere to remove the gaseous product, prevent condeasation and hinder
reverse reactions so the gaseous product will not suppress the reaction, or to react
with the sample. Examples of the latter are the cases of air or oxygen in oxidation
processes and carbon dioxide in the case of studying the reverse reaction of calcium
carbonate-calcium oxide equilibria. As previously noted, an inert atmosphere should
be used in Cases I and I1 and the proper reacting gas should be chosen for Cases HI-VI.

The sample holder should be a tall crucible which acts as a tare to prevent any
spattering of the material during the process and the material of the crucible should
te inert with respect to the sample studied and not act as a catalyst for the reaction
taking place. The powder should be well ground prior to its use and mixed well when
an interaction between two compounds is being studied.

RELATION BETWEEN ENTHALPY, AH*, AND INTERNAL ENERGY, 4E™*

For systems held at constant volume, i.e. allowing pressure to vary, studies as a
function of the temperature yield changes in the internal energy. However, for a
system at constaat pressure, i.e. no restraint on the volume, studies as a function of
the temperature yield changes in the enthalpy, not the internal energy, of the system
during the process. If one assumes only PV work is done, the relationship between
these thermodynamic parameters at constant pressure is given by dH* = 4E* -
P4V. For systems in which the volume change is negligible, 4H* and AE* can be
considered to be equivalent.

The change in internal energy of the system during the process being studied,
however, can be calculated from the change in enthalpy. For a system not involved in
the production of gases, one can estimate the change in volume of the system during
the process as the change in volume, 4V, is given by 4V = W(p, — p;)/p2.p, where
P> is the density of the products and p, the density of the reactants. In most cases,
this volume change would be insignificant. -

PV work is the work a system must do in order to expand against the pressure
of its atmosphere. For the production of 2 gas at 1 atm pressure, the volume change
is approximateiy equal to 82.05 7 ml/mole. The energy change for this work is
approximately equal to RT cal. For example, 2 system composed of 1 mole of material
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which completely decomposes to a gas at 300°C will involve PAYV work of almost
600 cal and a volume change of almost 25 i. Obviously, for solid-solid, hqmd—-hquxd,
and solid-liquid phase changes Ad* and AE* are essentially equal

EXPERIMENTAL APPLICATION OF THE MATHEMATICAL MODELS AND VERIFICATION OF THEIR
YALIDITY

The application of models I and II under inert, dynamic, furnace atmosphere
was done® on theophylline dehydration and phase transformation, methyl prednisolone
Form I, desolvation and chemical degradation and calcium oxalate dehydration®®
and chemical degradation!®. The results show that the extracted kinetic parameters
were consistent, reproducible, reliable, independent of the experimental conditions
and in good agreement with values obtained from the more tedious, time consuming,
isothermal approach. On the contrary, methods accepted in the literature yielded
kinetic parameters for the above-mentioned compound using the same thermnograms
that depend on the experimental conditions’.

The study of the applications was expanded to include not only organic and
inorganic compounds, but also polymers. The application to the degradation of
cross-linked polyethylene showed that the polymer decomposed in at least three
overlapping stages, each with a characteristic activation energy®. In addition, the use—-
of these mathematical models permitted the calculation? of enthalpies of sublimation
and vaporization of a thermally stable (in the iemperature range of vaporization or
sublimation) compound from a single thermogram. The values obtained by this
method were in excellent agreement with the values obtained from adiabatic calori-
metry. -

Finally, this approach was extended to thermal optical analysis® and therma} ___
X-ray diffractometry®. These latter techniques contribute an additional dimension
to the study of solid stats processes which do not involve weight changes. ‘

ACKNOWLEDGEMENTS

Supported in part by a grant from Pfizer Ing:., Groton, Connecticut and by a
grant from The University of Connecticut Research Foundation.

REFERENCES

R. R. A. Abou-Shaaban and A. P. Simonelli, Thermochim. Acta, 26 (1978) 67.

J. Sestak, V. Satava and W. W. Wendlandt, Thermochim. Acta, 7 (1973) 333.

J. Zsako, J. Therm. Anal., 5 (1973) 239.

J. H. Flynn and L. A. Wall, J. Res. Nat. Bur. Siand. Sect. A, 70 (1966) 487.

R. R. A. Abou-Shazban and A. P. Simon=lli, to be submitted to J. Pharm. Sci.

R. R. A. Abou-Shazaban, J. L. Haberfeld, E- M. Barrall 11, J. F. Johnson and A. P. Simoneclli,
J. Polym. Eng. Sci., 16 (1976) 544.

R. R. A. Abou-Shaaban and A_ P. Simonelli, to be submitted to J. Phys. Chem.

R.R. A_ Abou-Shaaban, J. A_ Refiner and A_ P. Simonelli, Thermockim. Acta, 26 (1978) 137.
R. R. A. Abou-Shaaban, J. A. Reffoer and A. P. Simonelli, 17:ermochxm.Acra.26(l978)125
R.R.A.Abou-ShaabanmdA.P.Sxmoncm 17:enno¢:hxm.Acm,26(l978) 11t - -

w OAWVnhUN=

ot
Q0w



